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Predictor-Corrector Block Iteration Method for Solving 
Ordinary Differential Equations

(Kaedah Lelaran Blok Peramal-Pembetul Bagi Menyelesaikan 
Persamaan Terbitan Biasa)

 ZANARIAH ABDUL MAJID* & MOHAMED SULEIMAN

ABSTRACT

Predictor-corrector two point block methods are developed for solving first order ordinary differential equations (ODEs) 
using variable step size. The method will estimate the solutions of initial value problems (IVPs) at two points simultaneously. 
The existence multistep method involves the computations of the divided differences and integration coefficients when 
using the variable step size or variable step size and order. The block method developed will be presented as in the form 
of Adams Bashforth - Moulton type and the coefficients will be stored in the code. The efficiency of the predictor-corrector 
block method is compared to the standard variable step and order non block multistep method in terms of total number 
of steps, maximum error, total function calls and execution times.
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ABSTRAK

Kaedah dua titik blok peramal-pembetul telah dibangunkan bagi penyelesaian persamaan terbitan biasa peringkat pertama 
menerusi panjang langkah berubah. Kaedah ini akan memberi nilai penghampiran bagi masalah nilai awal pada dua titik 
secara serentak. Kaedah multilangkah yang sedia ada melibatkan pengiraan beza pembahagi dan pekali kamiran apabila 
menggunakan saiz langkah berubah atau saiz langkah berubah dan berperingkat. Kaedah blok yang dibangunkan adalah 
dalam bentuk Adams Bashforth - Moulton dan pekali akan disimpan di dalam kod. Keberkesanan kaedah blok peramal-
pembetul akan di bandingkan dengan kaedah multilangkah bukan blok bagi panjang langkah dan peringkat berubah dari 
segi jumlah langkah, ralat maksimum, jumlah kiraan fungsi dan masa pelaksanaan. 

Kata kunci: Blok peramal pembetul; kaedah blok; persamaan terbitan biasa

INTRODUCTION

In this paper, we consider the form of IVPs for systems of 
first order ODEs as follows
	
	 y' = f (x, y),    y(a) = y0   a ≤ x ≤ b.	 (1)

	 Shampine and Gordon (1975), Suleiman (1979), 
Lambert (1993) and Omar (1999) described the algorithm 
of variable order and step size for the multistep method. 
The algorithm involved tedious computations of the 
divided differences and integration coefficients. Majid and 
Suleiman (2006) have shown that the cost of computing 
the divided differences and integration coefficients in the 
multistep method was expensive and the computational 
cost increases when the method was implemented in 
variable step size and order. 
	 A block method will compute simultaneously the 
solution values at several distinct points on the x-axis in 
the block. Block method for numerical solution had been 
proposed by several researchers such as Rosser (1976), 
Worland (1976), Chu and Hamilton (1987), Omar (1999), 
Majid and Suleiman (2006) and Majid et al. (2003, 2006). 

Majid et al. (2003, 2006) have introduced the two and 
three block one step methods based on Newton backward 
divided difference formulae for solving first order ODEs. 
The aim of this paper is to introduce the predictor corrector 
two point block method presented as in the simple form 
of Adams Moulton method for solving (1) using variable 
step size. 

Formulation of the two point block method

In Figure 1, the two values of yn–1  and yn+2 were 
approximated simultaneously in a block by using the same 
back values from the earlier block. 

Figure 1. Two point block method

xn–3 xn–2 xn–1 xn xn+1 xn+2
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	 The computed block has the step size 2h and the 
previous block has the step sizes 2rh and qh. The corrector 
formulae will involve the set of points {xn–2, xn–1, xn, xn+1, 
xn+2}, while the predictor formulae will involve the set 
of points {xn–3, xn–2, xn–1, xn}. Therefore, the corrector 
formulae will involve the step sizes of 2rh and 2h while 
the predictor formulae will only consider the step sizes 
qh and 2rh. The corrector formulae of the two point 
block method were derived using Lagrange interpolation 
polynomial of order 5. The two values of yn+1 and yn+2 can 
be obtained by integrating (1) over the interval [xn, xn+1] 
and [xn, xn+2], respectively using MAPLE and the following 
corrector formulae can be obtained as

	

		  	 (2)

	 The predictor formulae were derived similar as the 
corrector formulae and the interpolation points involved 
are (xn–3, fn–3), …, (xn, fn). 

Variable step size strategy

Shampine and Gordon (1975) step size strategy will be 
implemented in the methods described above, where the 
next step size will be restricted to half, double or the same 
as the current step size. The successful step size will remain 
constant for at least two blocks before we considered the 
next step size to be doubled. In the code developed, when 
the next successful step size is doubled, the ratio r is 0.5 
and if the next successful step size remain constant, r is 1. 
In case of step size failure, r is 2. 
	 Substitute r = 1, 2 and 0.5 in (2) will produce 
the following first and second points of the corrector 
formulae:
r = 1,

		  (3)

	

r = 2, 

	 	 (4)

r = 0.5, 

	 	 (5)

	 The above formulae are in the form of a constant 
step size multistep method. These formulae will be stored 
in the code and therefore we don’t have to compute the 
coefficients as the step size changing.

Implementation of the method

The first step in the code starts by finding the initial points 
in the starting block for the method. Each step in the first 
and second blocks was set to equal distant. Therefore the 
value r and q in Figure 1 will set equal to one. Initially 
we used the sequential Euler method to find the three 
additional points i.e xn–2, xn–1 and xn. The two block method 
can be applied after the points yn+1 and yn+2 for the next 
block has been obtained. Each point in the predictor and 
the corrector formulae can perform the computations 
simultaneously within the block as they are independent of 
each other. The values of yn+1 and yn+2 will be approximated 
using the predictor-corrector schemes. If s corrections are 
needed, then the sequence of computations at any mesh 
point is (PE) (CE)1 … (CE)s where P and C indicate 
the application of the predictor and corrector formulae 
respectively and E indicate the evaluation of the function 
f. Below we describe the iterated technique that has been 
implemented in the code:

Step 1: The predictor equations

P:	

		   	

E:	 f p
n+1 = (xn+1, y

p
n+1)

	 f p
n+2 = (xn+2, y

p
n+2)	
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Step 2: The corrector equations

C:	 		

	  	

E:	 f c
n+1 = (xn+1, y

c
n+1)

	 f c
n+2 = (xn+2, y

c
n+2)

 
Step 3: Convergent test: if yes go to Step 4 else Step 2
Step 4: Compute local truncation error, next step size

	 In the code, we iterate the corrector to convergence. 
The convergence test employed was <0.1 × 
tolerance and s is the number of iterations using (PE) (CE)1 
… (CE)s mode. After the successful convergence test, local 
errors estimate (Est) at the point xn+2 will be performed 
to control the error for the block. We obtained the Est by 
comparing the absolute difference of the corrector formula 
derived of order k and a similar corrector formula of order  
k – 1. The error control for the developed method is at the 
second point in the block because in general it had given 
us better results. 
	 The errors calculated in the code are defined as (Omar, 
1999)

	 	 (8)

where (y)t is the t-th component of the approximate y. 
A=1, B=0 correspond to the absolute error test. A=1, 
B=1 correspond to the mixed test and finally A=0, B=1 
correspond to the relative error test. 
	 The maximum error is defined as follows:

	 	 (9)

where N is the number of equations in the system and 
SSTEP is the number of successful steps. At each step of 
integration, a test for checking the end of the interval is 
made. If b denotes the end of the interval then

	 if  x + 2h ≥ b then hlast = 	 (10)

otherwise h remains as calculated. The interpolation 
polynomial will be used to find the four back points with 
hlast equally distant and then the two block method will be 
applied. The technique helped to reach the end point of 
the interval.

Stability region

The stability of the two point block method on a linear first 
order problem is applied to the test equation

	 y' = f = λy.	 (11)

	 The method is zero stable at r = 1, 2, 0.5 where all 
the principal roots lie in or on the unit circle. The stability 
region is investigated when the step size is constant, 
doubled and halved for the method. The test equation 
(11) is substituted into the corrector formulae of the block 
method. The stability polynomials of the block method at  
r = 1, 2, 0.5 are as follows, 
For r = 1 we have,

	

For r = 2 we have,

	
Finally, for r = 0.5 we have,

	

where = hλ and the stability region is shown in Figure 
2. 

Figure 2. Stability Region for two block corrector method

	 The stability region is inside the boundary of the 
dotted points. The stability region is larger when the step 
size is half (r = 2) compared to the step size being double  
(r = 0.5) or constant (r = 1) . This is expected because 
the region should get larger with smaller step sizes. The 
smallest stability region is when the step size being double  
(r = 0.5) for the method.
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NUMERICAL RESULTS

In order to study the efficiency of the proposed block 
method, we present some numerical experiments for the 
following problems:

Problem 1:	  = –y1,	

		  y1(0) = 1,     	 x ∈ [0,20]	
		   			 
		  Exact Solution: 	 y1(x) = e–x	

Problem 2:	  = 0.1(y1 – sin x) + cos x,	

		  y1(0) = 0,     	 x ∈ [0,20] 	 	
		   			 
		  Exact Solution: 	 y1(x) = sin x	

Problem 3:	 	

		  y1(0)=1, y2(0)=0, y3(0)=0, y4(0)=1, x∈ [0,20]	

		  Exact Solution: y1(x) = cos x, y2(x) = sin x, 
y3(x) = -sin x, y4(x) = cos x.

Problem 4:	  = y2,

		   = y1 – 4xex,

		  y1(0) = 0, y2(0) = 1,      [0,100]

		  Exact Solution: 	  y1(x) = x(1–x)ex, 

				    y2(x) = (1–x–x2)ex,	   

The following notations are used in the tables:
TOL	 Tolerance
MTD	 Method employed
TS	 Total steps taken 
FS	 Total failure step
MAXE	 Magnitude of the maximum error of the computed 

solution
FCN	 Total function calls
TIME	 The execution time taken in microseconds to 

complete the integration in a given range

RSTEP	 The ratio steps,  

RTIME	 The ratio execution times, 

2BPC	 Implementation of the two point predictor 
corrector block method using variable step size

1PVSO	 Implementation of the one point method of 
variable step size and order using the integration 
coefficients

	 The code was written in C language and executed on 
DYNIX/ptx operating system. Table 1-4 show the numerical 
results for the four given problems when solved using the 
two point predictor corrector block method (2BPC) and 
conventional non block multistep method (1PVSO) in Omar 
(1999).
	 In term of maximum error, 2BPC is better compared to 
1PVSO in all tested problems. The total number of steps for 
2BPC method has shown to be less than the 1PVSO method. 
The 2BPC saves considerable amount of computational time 
and is much faster than 1PVSO although the total function 
calls is twice than the total function taken by the 1PVSO. 
This has shown the advantage of the 2PBC method in the 
form of standard multistep method because the cost per step 
is cheaper. In Table 5, the ratios are greater than one shows 
that the 2BPC reduced the total steps taken and execution 
times compared to 1PVSO. These results are expected since 
the block method would approximate the solutions at two 
points simultaneously. 

CONCLUSION

In this paper, we have shown the efficiency of the developed 
predictor-corrector two point block method presented as 
in the simple form of Adams Bashforth - Moulton method 
using variable step size is suitable for solving ODEs. The 
method has shown the superiority in terms of total steps, 
maximum error and execution times over the one point 
multistep method.

Table 1. Numerical results for solving Problem 1

TOL MTD TS FS MAXE FCN TIME

10-2 2BPC
1PVSO

22
32

0
0

5.0529(-4)
2.5139(-2)

171
97

132
334

10-4 2BPC
1PVSO

32
35

0
0

3.1515(-6)
1.9434(-3)

303
127

212
438

10-6 2BPC
1PVSO

68
84

0
0

2.8360(-8)
1.2904(-7)

505
253

357
659

10-8 2BPC
1PVSO

146
168

0
0

1.5336(-10)
1.7610(-9)

981
505

719
1166

10-10 2BPC
1PVSO

340
390

0
0

1.4077(-12)
1.2743(-11)

2161
1171

1630
2778

	

TOL	MTD	 TS	 FS	 MAXE	 FCN	 TIME
210 �

	 2BPC
1PVSO	 29
38	 0
0	 6.9519(-4)
1.9992(-2)	 201
115	 339
392

410 �
	 2BPC

1PVSO	 39
82	 0
0	 1.2411(-4)
9.4330(-4)	 321
247	 416
846

610 �
	 2BPC

1PVSO	 158
182	 0
0	 4.0421(-8)
3.5795(-5)	 953
547	 1376
1664

810 �
	 2BPC

1PVSO	 341
435	 2
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Table 2. Numerical results for solving Problem 2

TOL MTD TS FS MAXE FCN TIME

10-2 2BPC
1PVSO

29
38

0
0

6.9519(-4)
1.9992(-2)

201
115

339
392

10-4 2BPC
1PVSO

39
82

0
0

1.2411(-4)
9.4330(-4)

321
247

416
846

10-6 2BPC
1PVSO

158
182

0
0

4.0421(-8)
3.5795(-5)

953
547

1376
1664

10-8 2BPC
1PVSO

341
435

2
0

8.1888(-9)
2.9001(-7)

2091
1306

3064
3815

10-10 2BPC
1PVSO

827
1044

1
0

6.4933(-11)
9.7441(-10)

4963
3133

7388
8949

	

Table 5. The ratios steps and execution times for solving Problem 1 to 4

PROB 1 PROB 2 PROB 3 PROB 4
TOL RSTEP RTIME RSTEP RTIME RSTEP RTIME RSTEP RTIME

10-2 1.45 2.53 1.31 1.16 1.47 1.42 1.34 1.72
10-4 1.20 2.07 2.10 2.03 1.36 1.25 1.48 1.56
10-6 1.24 1.85 1.15 1.21 1.32 1.17 1.33 1.45
10-8 1.15 1.62 1.28 1.25 1.35 1.41 2.18 2.33
10-10 1.15 1.70 1.26 1.21 1.34 1.41 2.11 2.61

Table 3. Numerical results for solving Problem 3

TOL MTD TS FS MAXE FCN TIME

10-2 2BPC
1PVSO

30
44

0
0

9.3294(-2)
9.9994(-1)

309
133

944
1336

10-4 2BPC
1PVSO

61
83

0
0

1.4804(-3)
5.1513(-3)

513
250

1322
1658

10-6 2BPC
1PVSO

137
181

0
0

1.9884(-5)
1.3466(-3)

1121
544

2904
3408

10-8 2BPC
1PVSO

322
435

0
0

2.0891(-7)
1.2342(-5)

2001
1306

5742
8081

10-10 2BPC
1PVSO

781
1044

0
0

2.2126(-9)
1.4101(-7)

4767
3133

13906
19568

	

Table 4. Numerical results for solving Problem 4

TOL MTD TS FS MAXE FCN TIME

10-2 2BPC
1PVSO

111
149

0
0

2.4548(-3)
8.6967(-3)

911
448

1245
2147

10-4 2BPC
1PVSO

266
394

0
0

3.2284(-5)
6.5069(-5)

2131
1183

2762
4316

10-6 2BPC
1PVSO

653
868

0
0

6.3745(-7)
1.0687(-6)

5177
2605

6500
9444

10-8 2BPC
1PVSO

1621
3530

0
0

7.7037(-9)
7.1469(-9)

12713
10591

16065
37358

10-10 2BPC
1PVSO

4040
8544

0
0

5.3125(-11)
7.8037(-11)

24903
25633

34556
90211
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